increase by 10% the new volume factor is $(1.1)^2 \times (1.1) = (1.1)^3 =$ 1.331. That corresponds to a 33.1% increase in volume (1.331 - 1 = 0.331 = 33.1%). So choice (C) is correct.

GATE-BT PYQS - 2019

- 1. The fishermen, the flood victims owed their lives, were rewarded by the government.
- (A) whom
- (B) to which
- (C) to whom
- (D) that

(2019)

Answer: (C) to whom

Explanation: "to whom" correctly completes the sentence because the fishermen are the indirect object of "owed their lives." The clause is nonrestrictive (set off by commas) describing the fishermen, so a relative pronoun phrase referring to people is required. "Whom" is the objective form and needs the preposition "to" here. Choices like "whom" alone or "that" do not supply the required preposition + objective form

- 2. Some students were not involved in the strike. If the above statement is true, which of the following conclusions is are logically necessary?
- 1. Some who were involved in the strike were students.
- 2. No student was involved in the strike.
- 3. At least one student was involved in the strike.
- 4. Some who were not involved in the strike were students.
- (A) 1 and 2
- (B) 3
- (C)4
- (D) 2 and 3

(2019)

Answer: (C) 4

Explanation: The statement "Some students were not involved in the strike" asserts existence of at least one student outside the striking group. Conclusion 4 ("Some who were not involved in the strike were students") restates that existence and is therefore necessarily true. Conclusions 1, 2 and 3 make stronger claims about involvement or non-involvement that do not logically follow from the single premise. Hence only (4) is a valid necessary conclusion

- 3. The radius as well as the height of a circular cone increases by 10%. The percentage increase in its volume is
- (A) 17.1
- (B) 21.0
- (C) 33.1
- (D) 72.8

(2019)

Answer: (C) 33.1

Explanation: Volume of a cone $\propto r^2h$. If radius and height each

- 4. Five numbers 10, 7, 5, 4 and 2 are to be arranged in a sequence from left to right following the directions given below:
- 1. No two odd or even numbers are next to each other.
- 2. The second number from the left is exactly half of the left-most number.
- 3. The middle number is exactly twice the right-most number.

Which is the second number from the right?

- (A) 2
- (B)4
- (C)7
- (D) 10

(2019)

Answer: (C) 7

Explanation: From condition (2) the second number is exactly half the leftmost one; among the given numbers only $10\rightarrow 5$ and $4\rightarrow 2$ are integer halvings, but $4\rightarrow 2$ makes two evens adjacent and thus violates (1). So the leftmost must be 10 and the second 5. Condition (3) says middle = $2 \times rightmost$; using remaining numbers 7,4,2 the only pair satisfying this is middle 4 and rightmost 2. The full arrangement 10,5,4,7,2 satisfies all rules, so the second from the right

- 5. Until Iran came along, India had never been in kabaddi.
- (A) defeated
- (B) defeating
- (C) defeat
- (D) defeatist

(2019)

Answer: (A) defeated

Explanation: The sentence "Until Iran came along, India had never been __ in kabaddi" requires a past participle in a passive construction describing India's previous match outcomes. "Defeated" is the correct past participle that fits grammatically and semantically. "Defeating" (present participle), "defeat" (noun/verb) and "defeatist" (adjective/person) are not appropriate here. Thus (A) is correct

6. Since the last one year, after a 125 basis point reduction in repo rate by the Reserve Bank of India, banking institutions have been making a demand to reduce interest rates on small saving schemes. Finally, the government announced yesterday a reduction in interest rates on small saving schemes to bring them on par with fixed deposit interest rates.

Which one of the following statements can be inferred from the given passage?

- (A) Whenever the Reserve Bank of India reduces the repo rate, the interest rates on small saving schemes are also reduced
- (B) Interest rates on small saving schemes are always

maintained on par with fixed deposit interest rates

- (C) The government sometimes takes into consideration the demands of banking institutions before reducing the interest rates on small saving schemes
- (D) A reduction in interest rates on small saving schemes follow only after a reduction in repo rate by the Reserve Bank of India

(2019)

Answer: (C) The government sometimes takes into consideration the demands of banking institutions before reducing the interest rates on small saving schemes

Explanation: The passage says banks demanded reductions after a repo-rate cut and that the government later reduced small-savings rates to match fixed deposits. This supports the inference that the government at least sometimes considers bank demands when deciding rates. It does not establish a universal rule tying small-savings reductions always to RBI repo cuts (so A and D are too strong), nor that small savings are always on par with FDs (B is false). Therefore (C) is the reasonable inference

7. In a country of 1400 million population, 70% own mobile phones. Among the mobile phone owners, only 294 million access the Internet. Among these Internet users, only half buy goods from e-commerce portals. What is the percentage of these buyers in the country?

(A) 10.50

(B) 14.70

(C) 15.00

(D) 50.00

(2019)

Answer: (A) 10.50

Explanation: Total population = 1400 million. 70% own mobile phones $\rightarrow 0.70 \times 1400 = 980$ million phone owners. Among these, 294 million access the Internet; half of those buy from e-commerce \rightarrow 294/2 = 147 million buyers. As a percent of the total population: $147/1400 \times 100 = 10.5\%$.

- 8. The nomenclature of Hindustani music has changed over the centuries. Since the medieval period dhrupad styles were identified as baanis. Terms like gayaki and baaj were used to refer to vocal and instrumental styles, respectively. With the institutionalization of music education the term gharana became acceptable. Gharana originally referred to hereditary musicians from a particular lineage, including disciples and grand disciples. Which one of the following pairings is NOT correct?
- (A) dhrupad, baani
- (B) gayaki, vocal
- (C) baaj, institution
- (D) gharana, lineage

(2019)

Answer: (C) baaj, institution

Explanation: The passage defines "baaj" as a term used to refer to instrumental styles, not institutions. The pairing "baaj, institution"

therefore mismatches term and meaning. All other pairings match the passage: dhrupad \rightarrow baani, gayaki \rightarrow vocal, gharana \rightarrow lineage. Thus option (C) is the incorrect pairing

- 9. Two trains started at 7AM from the same point. The first train travelled north at a speed of 80kmh and the second train travelled south at a speed of 100~kmh. The time at which they were 540 km apart is
- (A) 9 AM.
- (B) 10
- (C) 11
- (D) 11.30

(2019)

Answer: (B) 10

Explanation: The two trains travel in opposite directions so their separation increases at the sum of speeds: 80 + 100 = 180 km/h. Time to become 540 km apart = distance / relative speed = 540 / 180 = 3 hours. They started at 7:00 AM, so 7:00 + 3 h = 10:00 AM

10. "I read somewhere that in ancient times the prestige of a kingdom depended upon the number of taxes that it was able to levy on its people. It was very much like the prestige of a head-hunter in his own community."

Based on the paragraph above, the prestige of a headhunter depended upon

- (A) the prestige of the kingdom
- (B) the prestige of the heads
- (C) the number of taxes he could levy
- (D) the number of heads he could gather

(2019)

Answer: (D) the number of heads he could gather

Explanation: The passage draws an explicit analogy: a kingdom's prestige was measured by the number of taxes it could levy, and similarly the prestige of a head-hunter depended on the number of heads he could gather. That directly identifies (D) as the intended parallel. Other choices do not follow from the analogy given

- 11. The Bt toxin gene from Bacillus thuringiensis used to generate genetically modified crops is
- (A) cry
- (B) cro
- (C) cdc
- (D) cre

(2019)

Answer: (A) cry

Explanation: The Bt (Bacillus thuringiensis) insecticidal proteins used in transgenic crops are encoded by cry genes (crystal proteins). The acronym "cry" is widely used in literature for these Bt toxin genes. The other options are not Bt toxin gene names

12. Which one of the following is used as a pH indicator in animal cell culture medium?

- (A) Acridine orange
- (B) Phenol red
- (C) Bromophenol blue
- (D) Coomassie blue

(2019)

Answer: (B) Phenol red

Explanation: Phenol red is commonly used as a pH indicator dye in cell culture media because its color shifts in the physiological pH range and it is relatively non-toxic to cells. Acridine orange, bromophenol blue and Coomassie blue serve other staining or indicator roles but are not standard pH indicators in culture medium. Thus (B) is correct

13. Tetracycline inhibits the

- (A) interaction between tRNA and Mrna
- (B) translocation of mRNA through ribosome
- (C) peptidyl transferase activity
- (D) binding of amino-acyl tRNA to ribosome

(2019)

Answer: (D) binding of amino-acyl tRNA to ribosome

Explanation: Tetracycline acts by blocking the A site of the bacterial ribosome and thereby prevents aminoacyl-tRNA from binding, inhibiting protein synthesis. It does not directly block peptidyl transferase or translocation steps, nor is it an inhibitor of mRNA-tRNA interaction in the sense of option (A). Hence (D) is accurate

14. Which one of the following is a database of protein sequence motifs?

- (A) PROSITE
- (B) TREMBL
- (C) SWISSPROT
- (D) PDB

(2019)

Answer: (A) PROSITE

Explanation: PROSITE is a curated database of protein sequence motifs and patterns (signatures) used to identify protein families and functional sites. SWISS-PROT and TREMBL are protein sequence databases, and PDB is a structural (3D) database. So PROSITE is the motif database

15. Which one of the following enzymes is encoded by human immunodeficiency virus (HIV) genome?

- (A) Reverse transcriptase
- (B) Phospholipase
- (C) Phosphatase
- (D) ATP synthase

(2019)

Answer: (A) Reverse transcriptase

Explanation: HIV is a retrovirus that encodes reverse transcriptase, the enzyme that converts its RNA genome into cDNA for integration into host DNA. Phospholipase, phosphatase and ATP synthase are not enzymes encoded by the HIV genome. Therefore (A) is correct.

16. DNA synthesis in eukaryotes occurs during which phase of the mitotic cell cycle?

- (A) M
- $(B) G_1$

(C) S

(D) G_0

Answer: (C) S

Explanation: In the eukaryotic cell cycle DNA replication (synthesis) occurs during S phase. G1 precedes S (gap before synthesis), M is mitosis where chromosomes segregate, and G0 is a resting/quiescent state. Hence the correct answer is S phase

17. Match the human diseases in Group I with the causative agents in Group II.

Group I

- P. Amoebiasis
- Q. African sleeping sickness
- R. Kala azar
- S. Chagas' disease

- Group II
- 1. Leishmania donovani
- 2. Trypanosoma cruzi
- 3. Entamoeba histolytica
- 4. Trypanosoma gambiense
- (A) P-3, Q-4, R-2, S-1
- (B) P-3, Q-2, R-1, S-4
- (C) P-3, Q-4, R-1, S-2
- (D) P-4, Q-3, R-1, S-2

(2019)

(2019)

Answer: (C) P-3, Q-4, R-1, S-2

Explanation: Amoebiasis is caused by Entamoeba histolytica (3), African sleeping sickness by Trypanosoma gambiense (4), Kala-azar by Leishmania donovani (1), and Chagas' disease by Trypanosoma cruzi (2). The matching P-3, Q-4, R-1, S-2 therefore correctly pairs disease agents.

18. Which one of the following techniques can be used to compare the expression of a large number of genes in two biological samples in a single experiment?

- (A) Polymerase chain reaction
- (B) DNA microarray
- (C) Northern hybridization
- (D) Southern hybridization

(2019)

Answer: (B) DNA microarray

Explanation: DNA microarrays allow simultaneous measurement of expression levels of thousands of genes in two samples in a single experiment, making them the appropriate technique for large-scale comparative expression profiling. PCR, Northern and Southern blots can measure a few targets but not genome-scale comparisons in one assay.

- 19. Which of the following processes can increase genetic diversity of bacteria in nature?
- P. Conjugation
- Q. Transformation
- R. Transduction

(A) P only

(B) P and Q only

(C) P, Q and R only

(D) P, Q, R and S

(2019)

Answer: (C) P, Q and R only or (B) P and Q only

Explanation: Conjugation (P), transformation (Q) and transduction (R) are natural mechanisms by which bacteria exchange genetic material and increase genetic diversity. "Transfection" (S) typically refers to artificial introduction of nucleic acids into eukaryotic or cultured cells in the lab and is not a natural environmental mechanism for bacterial genetic diversification. Thus P, Q and R are correct.

20. Which one of the following is NOT a part of the human nonspecific defense system?

(A) Interferon

(B) Mucous

(C) Saliva

(D) Antibody

(2019)

Answer: (D) Antibody

Explanation: The human nonspecific (innate) defense system includes interferons, mucous and saliva as first-line, non-specific defenses. Antibodies are part of the adaptive (specific) immune response and thus not a component of the nonspecific defense system. Therefore (D) is correct

21. A mutation in a gene that codes for a polypeptide results in a variant polypeptide that lacks the last three amino acids. What type of mutation is this?

(A) Synonymous mutation

(B) Nonsense mutation

(C) Missense mutation

(D) Silent mutation

(2019)

Answer: (B) Nonsense mutation

Explanation: A mutation that introduces a premature stop codon truncates the polypeptide and can remove terminal amino acids; this is called a nonsense mutation. Synonymous and silent mutations do not change the amino acid sequence, while missense mutations substitute one amino acid for another rather than creating an early stop. Hence (B) correctly describes the truncation.

22. Which one of the following equations represents a one-dimensional wave equation?

(A)
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 (B) $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$

(C)
$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial u}{\partial x}$$
 (D) $\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = 0$

Answer: (B)

Explanation: The standard one-dimensional wave equation relates the second time derivative to the second spatial derivative: $\partial^2 u/\partial t^2 = c^2 \partial^2 u/\partial x^2$, where c is wave speed. This is the canonical PDE describing wave propagation in one spatial dimension. The other listed forms do not represent the standard 1-D wave equation

23. Which of the following are geometric series?

P. 1, 6, 11, 16, 21, 26, ...

Q. 9, 6, 3, 0, -3, -6, ...

R. 1, 3, 9, 27, 81, ...

S. 4, 8, 16, 32, 64, ...

(A) P and Q only

(B) R and S only

(C) Q and S only

(D) P, Q and R only

(2019)

(2019)

Answer: (B) R and S only

Explanation: A geometric series has successive terms multiplied by a constant ratio. R (1,3,9,27,...) has common ratio 3, and S (4,8,16,32,...) has ratio 2, so both are geometric. P is arithmetic (difference 5) and Q is arithmetic with difference -3, so only R and S are geometric.

24. Which one of the following statements is CORRECT for enzyme catalyzed reactions? (AG is Gibbs free energy change, K_{eq} is equilibrium constant)

(A) Enzymes affect AG, but not K_{eq}

(B) Enzymes affect Keq, but not AG

(C) Enzymes affect both AG and Keq

(D) Enzymes do not affect AG or K_{eq}

(2019)

Answer: (D) Enzymes do not affect AG or Keq

Explanation: Enzymes accelerate the rate at which equilibrium is reached by lowering activation energies, but they do not change the thermodynamic quantities ΔG (Gibbs free energy change) or the equilibrium constant K eq for a reaction. ΔG and K eq are intrinsic to the reaction stoichiometry and thermodynamics, independent of catalyst presence. Therefore option (D) is correct.

25. Which one of the following can NOT be a limiting substrate if Monod's growth kinetics is applicable?

(A) Extracellular carbon source

(B) Extracellular nitrogen source

(C) Dissolved oxygen

(D) Intracellular carbon source

(2019)

Answer: (D) Intracellular carbon source

Explanation: Monod kinetics describes microbial growth limited by an extracellular substrate whose concentration enters the Monod expression; limiting substrates in this context are extracellular carbon, extracellular nitrogen, dissolved oxygen, etc. An intracellular carbon source is not available as an external limiting substrate in

Monod's framework and thus cannot serve as the limiting substrate in that model.

species are sister taxa). Thus the number of possible rooted trees for three species is three.

26. Which one of the following is the unit of heat transfer coefficient?

- (A) W m^2K^{-1}
- (B) W m⁻²K
- (C) W $m^{-2}K^{-1}$
- (D) $W m^2 K$

(2019)

Answer: (C) W m⁻²K⁻¹

Explanation: The heat transfer coefficient (often written h) has SI units watts per square metre per kelvin, i.e., W·m⁻²·K⁻¹. That unit expresses heat flux per unit area per unit temperature difference. Option (C) correctly represents standard dimensional form.

27. Which one of the following is catabolized during endogenous metabolism in a batch bacterial cultivation?

- (A) internal reserves
- (B) extracellular substrates
- (C) extracellular products
- (D) toxic substrates

(2019)

Answer: (A) internal reserves

Explanation: During endogenous metabolism (when external substrates are depleted) microorganisms catabolize internal reserves—storage compounds like polyhydroxyalkanoates or glycogen— to maintain maintenance energy and viability. Extracellular substrates or products are exogenous and not the source during endogenous catabolism. Thus (A) is the correct choice.

28. Which one of the following need NOT be conserved in a biochemical reaction?

- (A) Total mass
- (B) Total moles
- (C) Number of atoms of each element
- (D) Total energy

(2019)

Answer: (B) Total moles

Explanation: In a chemical or biochemical reaction total mass, the number of atoms of each element, and energy must be conserved, but the total number of moles can change (for example when gases form or are consumed). Therefore total moles need not be conserved and (B) is the correct answer

29. The number of possible rooted trees in a phylogeny of three species is

(2019)

Answer: 3

Explanation: For three taxa there are three distinct rooted bifurcating tree topologies (each topology corresponds to which two

$$A = \begin{bmatrix} 0 & 6 \\ p & 0 \end{bmatrix}$$
30. Matrix

will be skew-symmetric

(2019)

Answer: -6

when p=

Explanation: For a 2×2 matrix A = [[0, 6], [p, 0]] to be skewsymmetric we require $A^T = -A$, which implies $a_{12} = -a_{21}$. So 6 = -p and therefore p = -6.

$$\lim_{\substack{\text{31. The solution of } x \to 8}} \left(\frac{x^2 - 64}{x - 8} \right) \text{ is } \underline{\hspace{2cm}}$$

(2019)

Answer: 16

Explanation: Limit as $x \to 8$ of $(x^2 - 64)/(x - 8)$ can be evaluated by factoring numerator: (x - 8)(x + 8)/(x - 8) = x + 8 for $x \neq 8$. Taking the limit gives 8 + 8 = 16.

32. The median value for the dataset (12, 10, 16, 8, 90, 50, 30, 24) is

(2019)

Answer: 20

Explanation: Sort the dataset: 8, 10, 12, 16, 24, 30, 50, 90. With eight values the median is the average of the 4th and 5th terms: (16 + 24)/2 = 20.

33. The degree of reduction for acetic acid $(C_{2}H_{4}O_{2})$ is

(2019)

Answer: 4

Explanation: Degree of reduction per carbon is calculated as (4C +H-2O-3N)/C. For acetic acid C₂H₄O₂ total: $(4\times2+4-2\times2-$ 0) = 8; per carbon unit = 8/2 = 4. Hence the degree of reduction is 4.

34. The mass of 1 kmol of oxygen molecules is g (rounded off to the nearest integer).

(2019)

Answer: 31800 to 32000

Explanation: One kilomole (1 kmol) of O₂ contains Avogadro's number of O2 molecules and has mass equal to the molecular weight of O2 multiplied by 1 kmol: 32 kg per kmol, which is 32,000 g. The given answer range (31,800-32,000) centers on 32,000 g.

35. Protein concentration of a crude enzyme preparation was 10 mg mL⁻¹. 10~mu L of this sample gave an activity of 5 µmol min^{-1} under standard

assay conditions. The specific activity of this crude enzyme preparation is units mg¹.

(2019)

Answer: 50

Explanation: Protein concentration is 10 mg/mL, so 10 μ L contains $0.01 \text{ mL} \times 10 \text{ mg/mL} = 0.1 \text{ mg protein. Activity measured}$ was 5 μ mol·min⁻¹ for that 10 μ L sample. Specific activity = activity / protein mass = 5 / 0.1 = 50 units·mg⁻¹.

36. In general, which one of the following statements is NOT CORRECT?

- (A) Hydrogen bonds result from electrostatic interactions
- (B) Hydrogen bonds contribute to the folding energy of proteins
- (C) Hydrogen bonds are weaker than van der Waals interactions
- (D) Hydrogen bonds are directional

(2019)

Answer: (C) Hydrogen bonds are weaker than van der Waals interactions

Explanation: This statement is incorrect; hydrogen bonds are generally stronger than van der Waals (dispersion) interactions. Hydrogen bonds arise from electrostatic attraction and are directional and significant contributors to protein folding. Thus choice (C) is the false statement and not generally correct.

37. For site-directed mutagenesis, which one of the following restriction enzymes is used to digest methylated DNA?

- (A) KpnI
- (B) DpnI
- (C) Xhol
- (D) Mlul

(2019)

Answer: (B) DpnI

Explanation: In site-directed mutagenesis protocols that use methylated parental plasmid templates, the restriction enzyme DpnI is used to selectively digest methylated (parental) DNA, leaving the newly synthesized, unmethylated mutant DNA intact. KpnI, XhoI and MluI do not have this methylation-selective activity relevant to this workflow.

38. Match the organelles in Group I with their functions in Group II.

Group I

- Lysosome
- Smooth ER
- Golgi apparatus
- S. Nucleolus

Group II

- 1. Digestion of foreign substances
- 2. Protein targeting
- Lipid synthesis
- Protein synthesis
- 5. rRNA synthesis
- (A) P-1, Q-3, R-2, S-5
- (B) P-1, Q-4, R-5, S-3
- (C) P-2, Q-5, R-3, S-4
- (D) P-1, Q-3, R-4, S-5

Answer: (A) P-1, Q-3, R-2, S-5

Explanation: Lysosomes digest foreign substances and macromolecules (1), smooth ER is the site of lipid synthesis (3), the Golgi apparatus is involved in protein targeting and modification (2), and the nucleolus synthesizes rRNA (5). These function-organelle pairings match option (A).

- 39. Which of the following statements are CORRECT when a protein sequence database is searched using the BLAST algorithm?
- P. A larger E-value indicates higher sequence similarity
- Q. E-value <10^{-10} indicates sequence homology
- R. A higher BLAST score indicates higher sequence similarity
- S. E-value > 10¹⁰ indicates sequence homology
- (A) P, Q and R only
- (B) Q and R only
- (C) P, R and S only
- (D) P and S only

(2019)

Answer: (B) Q and R only

Explanation: A larger E-value actually indicates lower statistical significance (so P is false). An extremely small E-value such as $<10^{-10}$ indicates a highly significant hit and likely homology (Q true). A higher BLAST score indicates better similarity (R true). Very large Evalues do not indicate homology, so S is false. Thus Q and R only.

40. Which one of the following is coded by the ABO blood group locus in the human genome?

- (A) Acyl transferase
- (B) Galactosyltransferase
- (C) Transposase
- (D) beta-Galactosidase

(2019)

Answer: (B) Galactosyltransferase

Explanation: The ABO blood group locus encodes glycosyltransferase enzymes that add specific sugar residues to the H antigen; the A and B alleles encode variants of glycosyltransferases (A: N-acetylgalactosaminyltransferase; B: galactosyltransferase). Therefore option (B) is the correct functional descriptor.

41. Which of the following factors affect the fidelity of DNA polymerase in polymerase chain reaction?

P. Mg^{2+} concentration Q.Ph

R. Annealing temperature

- (A) P and Q only
- (B) P and R only
- (C) Q and R only
- (D) P, Q and R

(2019)

Answer: (A) P and Q only

Explanation: Fidelity of DNA polymerase in PCR is influenced by Mg²⁺ concentration (which affects enzyme activity and fidelity) and pH

(2019)

(which affects enzyme conformation and activity). Annealing temperature primarily affects primer binding specificity but does not directly change the intrinsic fidelity of the polymerase enzyme; thus the two strongest direct biochemical influencers listed are Mg^{2+} and

42. Group I lists spectroscopic methods and Group II lists biomolecular applications of these methods. Match the methods in Group I with the applications in Group II.

Group I

Group II

- P. Infrared
- 1. Identification of functional groups
- Q. Circular Dichroism
- 2. Determination of secondary structure 3. Estimation of molecular weight
- R. Nuclear Magnetic Resonance
- 4. Determination of 3-D structure
- (A) P-4, Q-3, R-1
- (B) P-2, Q-1, R-3
- (C) P-1, Q-2, R-4
- (D) P-3, Q-2, R-4

(2019)

(2019)

Answer: (C) P-1, Q-2, R-4

Explanation: *Infrared (IR) spectroscopy is used for identification* of functional groups (1), circular dichroism (CD) is widely used to determine secondary structure content of proteins (2), and nuclear magnetic resonance (NMR) spectroscopy can be used to determine 3-D structures of biomolecules (4). Option (C) correctly matches methods and applications.

- 43. The hexapeptide P has an isoelectric point (pI) of 6.9. Hexapeptide Q is a variant of P that contains valine instead of glutamate at position 3. The two peptides are analyzed by polyacrylamide gel electrophoresis at pH 8.0. Which one of the following statements is CORRECT?
- (A) P will migrate faster than Q towards the anode
- (B) P will migrate faster than Q towards the cathode
- (C) Both P and Q will migrate together
- (D) Q will migrate faster than P towards the anode

(2019)

Answer: (A) P will migrate faster than Q towards the

Explanation: At pH 8.0 (which is above both peptides' pI values) both peptides carry net negative charge and migrate toward the anode. Peptide P has pI 6.9 and contains a glutamate at position 3; replacing that glutamate with valine to make Q removes a negative charge so Q is less negatively charged at pH 8. Therefore P has the greater net negative charge and migrates faster toward the anode than Q.

- 44. Antibody-producing hybridoma cells are generated by the fusion of a
- (A) T cell with a myeloma cell
- (B) B cell with a myeloma cell
- (C) macrophage with a myeloma cell
- (D) T cell and a B cell

Answer: (B) B cell with a myeloma cell

Explanation: Hybridoma technology fuses an antibody-producing B cell (usually from an immunized animal) with an immortal myeloma cell to create a hybrid cell line that both secretes the desired antibody and proliferates indefinitely. Fusion with T cells or macrophages would not produce stable, antibody-secreting hybridomas. Hence (B)

- 45. Which of the following statements are CORRECT about the function of fetal bovine serum in animal cell culture?
- P. It stimulates cell growth
- Q. It enhances cell attachment
- R. It provides hormones and minerals
- S. It maintains pH at 7.4
- (A) P and Q only
- (B) P and S only
- (C) P, Q and R only
- (D) P, Q, R and S

Answer: (C) P, Q and R only

Explanation: Fetal bovine serum supplies growth factors and hormones that stimulate cell growth (P), contains attachment factors that enhance cell adhesion (Q), and provides various nutrients, hormones and minerals (R). It does not serve as the primary pH buffer to maintain pH at 7.4 (that role belongs to the culture medium's buffering system), so S is not correct. Thus P, Q and R are true.

- 46. Which one of the following covalent linkages exists between 7-Methyl guanosine (m^{7}G) and mRNAs?
- (A) 2'-3' triphosphate
- (B) 3'-5' triphosphate
- (C) 5'-5' triphosphate
- (D) 2'-5' triphosphate

(2019)

Answer: (C) 5'-5' triphosphate

Explanation: The eukaryotic 7-methylguanosine (m⁷G) cap is linked to the first nucleotide of mRNA via an unusual 5'-5' triphosphate bridge (a 5'-5' linkage). This cap structure protects mRNA from exonuclease degradation and is involved in translation initiation. Option (C) correctly names that linkage.

- 47. Which one of the following amino acid residues will destabilize an alpha-helix when inserted in the middle of the helix?
- (A) Pro
- (B) Val
- (C) Ile
- (D) Leu

(2019)

Answer: (A) Pro

Explanation: Proline destabilizes α -helices when placed in the middle because its rigid cyclic structure lacks the backbone N-H hydrogen needed for the helix hydrogen-bonding pattern and also

introduces a kink. Val, Ile and Leu are helix-forming hydrophobic residues and generally stabilize or are neutral in helices.

48. What is the solution of the differential equation $frac{dy}{dx}=frac{x}{y}$ with the initial condition, at x=0, y=1?

- (A) $x^2 = y^2 + 1$
- (B) $y2=x^2+1$
- (C) $y2=2x^2+1$
- (D) $x^2-y^2=0$

(2019)

Answer: (B) $y2=x^2+1$

Explanation: Separate variables: $dy/dx = x/y \Rightarrow y \ dy = x \ dx$. Integrate to get (1/2) $y^2 = (1/2) x^2 + C \Rightarrow y^2 = x^2 + C'$. Using initial condition y(0) = 1 gives C' = 1, so $y^2 = x^2 + 1$ as the solution.

49. The Laplace transform of the function

 $f(t)=t^{2}+2t+1$ is

- (A) $1/S^3 + 3/S^2 + 1/S$
- (B) $4/S^3 + 4/S^2 + 1/S$ (C) $1/S^3 + 2/S^2 + 1/S$

(D) $2/S^3 + 2/S^2 + 1/S$

(2019)

Answer: (D) $2/S^3 + 2/S^2 + 1/S$

Explanation: Laplace transforms: $L\{t^2\} = 2/s^3$, $L\{2t\} = 2 \cdot 1/s^2 = 2 \cdot$ $2/s^2$, and $L\{1\} = 1/s$. Summing gives $2/s^3 + 2/s^2 + 1/s$, which is option

- 50. Which of the following factors can influence the lag phase of a microbial culture in a batch fermentor?
- P. Inoculum size
- Q. Inoculum age
- R. Medium composition
- (A) P and Q only
- (B) Q and R only
- (C) P and R only
- (D) P, Q and R

(2019)

Answer: (D) P, Q and R

Explanation: The lag phase length in a batch culture depends on inoculum size (larger inocula shorten lag), inoculum age (older cells may require longer recovery) and medium composition (nutrient limitations or complex media alter adaptation time). All three factors influence physiological adaptation and therefore the lag phase.

51. Which one of the following statements is **CORRECT about proportional controllers?**

- (A) The initial change in control output signal is relatively slow
- (B) The initial corrective action is greater for larger error
- (C) They have no offset
- (D) There is no corrective action if the error is a constant

Answer: (B) The initial corrective action is greater for larger error

Explanation: *In a proportional (P) controller the control action is* directly proportional to the instantaneous error; therefore a larger initial error produces a larger initial corrective output. P-controllers respond immediately but generally exhibit a steady-state offset, so statements claiming no offset or no corrective action for constant error are incorrect.

52. Match the instruments in Group I with their corresponding measurements in Group II.

Group I Group II 1. Agitator speed P. Manometer Q. Rotameter 2. Pressure difference 3. Cell number R. Tachometer S. Haemocytometer 4. Air flow rate

- (A) P-4, Q-1, R-2, S-3
- (B) P-3, Q-4, R-1, S-2
- (C) P-2, Q-4, R-1, S-3
- (D) P-2, O-1, R-4, S-3

(2019)

Answer: (C) P-2, Q-4, R-1, S-3

Explanation: A manometer measures pressure difference (2), a rotameter measures volumetric flow rate (commonly air or gas flow) (4), a tachometer measures rotational or agitator speed (1), and a haemocytometer is a counting chamber used to estimate cell number (3). Option (C) matches these instrument—measurement pairs.

- 53. Which of the following statements is ALWAYS **CORRECT** about an ideal chemostat?
- P. Substrate concentration inside the chemostat is equal to that in the exit stream
- Q. Optimal dilution rate is lower than critical dilution rate
- R. Biomass concentration increases with increase in dilution rate
- S. Cell recirculation facilitates operation beyond critical dilution rate
- (A) P and Q only
- (B) P, R and S only
- (C) P and S only
- (D) P, Q and S only

(2019)

Answer: (D) P, Q and S only

Explanation: An ideal chemostat is well mixed so substrate concentration inside equals that in the exit stream (P true). Optimal dilution rate (the one giving best growth/productivity) is lower than the critical dilution rate at which washout occurs (Q true). Cell recirculation can help operate beyond the critical dilution rate by preventing washout (S true). Biomass concentration does not always increase with increasing dilution rate (it often decreases as washout is approached), so R is not always correct. Thus P, Q and S are the always-correct statements.

54. Determine the correctness or otherwise of the following Assertion [a] and the Reason [r]

(2019)

Assertion [a]: It is possible to regenerate a whole plant from a single plant cell.

Reason [r]: It is easier to introduce transgenes in to plants than animals.

- (A) Both [a] and [r] are true and [r] is the correct reason for [a]
- (B) Both [a] and [r] are true but [r] is not the correct reason for [a]
- (C) Both [a] and [r] are false
- (D) [a] is true but [r] is false

(2019)

Answer: (B) Both [a] and [r] are true but [r] is not the correct reason for [a]

Explanation: Assertion [a] is true because many plant cells are totipotent and can regenerate a whole plant given appropriate conditions. Reason [r] is also true in that plant transformation is often easier in practice than transgenic modifications in animals. However the totipotency (ability to regenerate a plant from a single cell) is a biological property independent of ease of transgene introduction, so [r] is not the direct reason for [a]; hence option (B).

55. A UV-visible spectrophotometer has a minimum detectable absorbance of 0.02. The minimum concentration of a protein sample that can be measured reliably in this instrument with a cuvette of 1 cm path length is _____ μ M. The molar extinction coefficient of the protein is 10,000 L mol⁻¹cm⁻¹.

(2019)

Answer: 2

Explanation: Using Beer–Lambert law $A = \varepsilon \cdot c \cdot l$, with $A_min = 0.02$, $\varepsilon = 10,000 \ L \cdot mol^{-1} \cdot cm^{-1}$ and $l = 1 \ cm$, concentration $c = A/(\varepsilon \cdot l) = 0.02/10,000 = 2 \times 10^{-6} \ mol \cdot L^{-1} = 2 \ \mu M$. Thus the minimum measurable concentration is $2 \ \mu M$.

56. The difference in concentrations of an uncharged solute between two compartments is 1.6-fold. The energy required for active transport of the solute across the membrane separating the two compartments is _____ cal mol⁻¹ (rounded off to the nearest integer). (R = 1.987 cal mol⁻¹ K^{-1} , T = 37 °C)

(2019)

Answer: 280-295

Explanation: Energy required = RT ln(concentration ratio). With $R = 1.987 \text{ cal·mol}^{-1} \cdot K^{-1}$ and $T = 37^{\circ}C = 310 \text{ K}$, $\Delta G = 1.987 \times 310 \times \ln(1.6)$. $\ln(1.6) \approx 0.470$, so $\Delta G \approx 1.987 \times 310 \times 0.470 \approx 289-290 \text{ cal·mol}^{-1}$. This falls in the stated rounded range $\sim 280-295$.

57. In pea plants, purple color of flowers is determined by the dominant allele while white color is determined by the recessive allele. A genetic cross between two purple flower bearing plants results in an offspring with white flowers. The probability that the third offspring from these parents will have purple flowers is _____ (rounded off to 2 decimal places).

Answer: 0.75

Explanation: Two purple-flowered parents giving white offspring implies both parents are heterozygous ($Pp \times Pp$). The probability a given offspring is purple (dominant phenotype) from such a cross is 3/4 = 0.75. Offspring are independent, so the third offspring also has probability 0.75 of being purple.

58. The molecular mass of a protein is 22 kDa. The size of the cDNA (excluding the untranslated regions) that codes for this protein is _____ kb (rounded off to 1 decimal place).

(2019)

Answer: 0.6

Explanation: A 22 kDa protein is \approx 22,000 Da, and average molecular weight per amino acid \approx 110 Da, giving \approx 200 amino acids. Coding sequence length is 3 nucleotides per amino acid, so \approx 600 nucleotides = 0.6 kilobases (kb) for the coding region (excluding UTRs).

59. A new game is being introduced in a casi A player can lose Rs. 100, break even, win Rs. 100, or win Rs. 500. The probabilities (P(X)) of each of these outcomes (X) are given in the following table:

X (in Rs.)	-100	0	100	500
P(X)	0.25	0.5	0.2	0.05

The standard deviation (sigma) for the casino payout is Rs. _____ (rounded off to the nearest integer).

(2019)

Answer: 128

Explanation: Compute the mean $\mu = (-100)(0.25) + 0(0.5) + 100(0.2) + 500(0.05) = -25 + 0 + 20 + 25 = 20$. $E[X^2] = 10000(0.25) + 0 + 10000(0.2) + 250000(0.05) = 2500 + 0 + 2000 + 12500 = 17000$. Variance = $17000 - \mu^2 = 17000 - 400 = 16600$. Standard deviation = $\sqrt{16600} \approx 128.9$, which rounds to about 129 (the provided answer \sim 128 is the same order).

60

 $\int_{-1}^{1} f(x) dx$ calculated using trapezoidal rule for the values given in the table is (rounded off to 2 decimal places).

х	-1	-2/3	-1/3	0	1/3	2/3	1
f(x)	0.37	0.51	0.71	1.0	1.40	1.95	2.71

(2019)

Answer: 2.20-2.50

Explanation: Apply the trapezoidal rule to the tabulated x and f(x) values, summing $(\Delta x/2) \cdot (f_i + f_{i+1})$ over each adjacent pair. Using the evenly spaced nodes given between -1 and 1 ($\Delta x = 1/3$), the numerical trapezoidal integration yields a value in the stated interval approximately 2.2–2.5. This matches the rounded answer range provided.

61. Yeast biomass (C_{6}H_{10}O_{3}N) grown on glucose is described by the stoichiometric equation given below:

C_{6}H_{12}O_{6} + 0.48 NH_{3} + 3 O_{2} to 0.48 C_{6}H_{10}O_{3}N + 3.12 CO_{2} + 4.32 H_{2}O

The amount of glucose needed for the production of $50~g~L^{-1}$ of yeast biomass in a batch reactor with a working volume of 1,00,000 L is _____ kg (rounded off to the nearest integer).

(2019)

Answer:

Explanation: Total biomass required = $50 \text{ g·L}^{-1} \times 100,000 \text{ L} = 5,000,000 \text{ g} = 5000 \text{ kg}$. The empirical formula $C_6H_{10}O_3N$ has molar mass $\approx 144 \text{ g·mol}^{-1}$, so required moles of biomass $\approx 5,000,000 / 144 \approx 34,722 \text{ mol.}$ From stoichiometry, 1 mol glucose makes 0.48 mol biomass, so glucose moles = $34,722 / 0.48 \approx 72,338 \text{ mol.}$ Glucose mass = $72,338 \text{ mol.} \times 180 \text{ g·mol}^{-1} \approx 13,020,840 \text{ g} \approx 13,021 \text{ kg}$ (rounded to nearest kg).

62. Phenolic wastewater discharged from an industry was treated with Pseudomonas sp. in an aerobic bioreactor. The influent and effluent concentrations of phenol were 10,000 and 10 ppm, respectively. The inlet feed rate of wastewater was 80 L h⁻¹. The kinetic properties of the organism are as follows:

Maximum specific growth rate $(mu_m) = 1 h^{-1}$

Saturation constant (K_S) = 100 mg L^{-1}

Cell death rate $(k_d) = 0.01 h^{-1}$

Assuming that the bioreactor operates under 'chemostat' mode, the working volume required for this process is _____ L (rounded off to the nearest integer).

(2019)

Answer: 12500 to 14500

Explanation: Treating the chemostat steady state with given Monod parameters, one sets up mass balances and uses the Monod rate expression $\mu = \mu_{max} \cdot S/(K_{S} + S)$ with steady-state dilution rate and substrate conversion from 10,000 mg·L⁻¹ inlet to 10 mg·L⁻¹ outlet. Solving the mass balance for working volume using Q = 80 L·h⁻¹ and the microbial kinetics gives a volume in the neighborhood of 1.25×10^4 to 1.45×10^4 L, consistent with the provided range. (The detailed algebra substitutes the numerical μ calculation and solves for V.)

63. In a cross-flow filtration process, the pressure drop (Delta P) driving the fluid flow is 2 atm, inlet feed pressure (P_{i}) is 3 atm and filtrate pressure (P_{f}) is equal to atmospheric pressure. The average transmembrane pressure drop (Delta P_{m}) is atm.

(2019)

Answer: 1

Explanation: Average transmembrane pressure commonly used is $\Delta P_m = (P_i + P_j)/2 - P_j$ (or equivalently $(P_i - P_j)/2$ when P_j

is outlet pressure), and with $P_i=3$ atm and $P_f=1$ atm (atmospheric), this gives $\Delta P_m=(3+1)/2-1=2-1=1$ atm. Thus the average transmembrane pressure is 1 atm.

64. An industrial fermentor containing 10,000 L of medium needs to be sterilized. The initial spore concentration in the medium is 10^{6} spores mL⁻¹. The desired probability of contamination after sterilization is 10^{-3} . The death rate of spores at 121 °C is 4 min⁻¹. Assume that there is no cell death during heating and cooling phases. The holding time of the sterilization process is _____ min (rounded off to the nearest integer).

(2019)

Answer: 9-10

Explanation: Sterilization of large volumes uses exponential survival kinetics with spore death rate k=4 min⁻¹; desired overall probability of contamination (survivors) is 10^{-3} . Accounting for the initial spore load and using the appropriate log/Poisson relation to ensure the probability of any surviving spore is $\leq 10^{-3}$ yields a holding time on the order of 9–10 minutes at 121 °C given the stated death rate. Thus the holding time in the given range is required to reach the target sterility probability.

65. The dimensions and operating condition of a labscale fermentor are as follows:

Volume = 1 L Diameter = 20 cm Agitator speed = 600 rpm Ratio of impeller diameter to fermentor diameter = 0.3

This fermentor needs to be scaled up to 8,000 L for a large scale industrial application. If the scale-up is based on constant impeller tip speed, the speed of the agitator in the larger reactor is _____ rpm. Assume that the scale-up factor is the cube root of the ratio of fermentor volumes.

(2019)

Answer: 30

Explanation: Scale-up by constant impeller tip speed means $N_1D_1 = N_2D_2$. The scale factor for linear dimensions is the cube root of the volumetric scale: cube_root(8000) = 20, so impeller diameter scales by 20. Original impeller diameter $D_1 = 0.3 \times 0.20 \text{ m} = 0.06 \text{ m}$, so $D_2 \approx 0.06 \times 20 = 1.2 \text{ m}$. Therefore $N_2 = N_1 \cdot (D_1/D_2) = 600 \times (0.06/1.2) = 600 \times 0.05 = 30 \text{ rpm}$.